Unsupervised Learning Algorithms
106,99 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.
Autor: | M. Emre Celebi, Kemal Aydin |
---|---|
EAN: | 9783319242118 |
eBook Format: | |
Sprache: | English |
Produktart: | eBook |
Veröffentlichungsdatum: | 29.04.2016 |
Kategorie: | |
Schlagworte: | Big Data Patterns Data Analytics Data Mining Elements Statistical Learning Genomic Data Sets Machine Learning Pattern Recognition Statistical Learning Theory Unsupervised Algorithms Unsupervised Learning |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Bergische Buchhandlung Hückeswagen
Bahnhofstraße 8
42499 Hückeswagen
Telefon: 02192/4024
Mo – Fr09:00 – 18:00 UhrSa09:00 – 13:00 Uhr